AQA Maths M2

Topic Questions from Papers

Moments and Equilibrium

Answers

$\mathbf{1}$	$5 T_{A}=20 \times 9.8 \times 1.5$	M1		Moment equation. Correct equation $T_{A}=\frac{20 \times 9.8 \times 1.5}{5}=58.8 \mathrm{~N}$
	$T+58.8=20 \times 9.8$	A1		Correct tension Vertical equation with T or moments equation. Correct equation
	$T=137.2 \mathrm{~N}$	M1	A1	
		A1	6	Correct tension

(Q1, Jan 2006)

(Q2, Jan 2007)

(Q4, June 2007)

4 (a)

(b) Resolve vertically:
$R=20 g+80 g$

$$
=100 g
$$

Using $F=\mu R$:
$F=0.4 \times 100 \mathrm{~g}$
$=40 g$ or 392 N
(c) Resolve horizontally:
$S=40 \mathrm{~g}$
Moments about A :
$80 g x \cos 60+20 g .2 \cos 60$ $=S .4 \cos 30$
$40 g x+20 g=138.56 g$
$x=\frac{118.56}{40}$
$=2.96 \mathrm{~m}$

B2	2	B1 for any 4 correct
B1		Must see $20 g+80 g$ or $100 g$ to obtain any m1
A1	3	AG
B1		Mep 1
M1A1		
A1		Mep for 3 terms, all moments
m1	Accept $2 \sqrt{3}-\frac{1}{2}$	
A1	6	$\mathbf{1 1}$

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
5 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
 \\
Taking moments about \(A\)
\[
\begin{gathered}
2.1 \times 40 \mathrm{~g}=T_{B} \times 4 \\
T_{B}=21 \mathrm{~g}
\end{gathered}
\] \\
Resolve vertically \(T_{A}+T_{B}=40 \mathrm{~g}\)
\[
T_{A}=19 \mathrm{~g} \text { or } 186 \mathrm{~N}
\] \\
Gravitational force acts through mid point of the rod
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 B1 \\
A1 \\
M1 \\
A1 \\
E1
\end{tabular} \& 1

3
2
1 \& B1 for 2.1

\hline \& Total \& \& 7 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 6 (a) \& \begin{tabular}{l}
A \\
Resolve vertically:
\[
\begin{aligned}
R \& =22 g+90 g \\
\& =112 g
\end{aligned}
\]
\[
\begin{aligned}
\& \text { Using } F=\mu R \text { : } \\
\& \begin{aligned}
F \& =0.6 R \\
F \& =0.6 \times 112 g \\
\& =67.2 g \text { or } 658.56 \\
F \& =659 \mathrm{~N}
\end{aligned}
\end{aligned}
\] \\
Resolve horizontally:
\[
S=F
\] \\
Moments about \(A\) :
\[
\begin{aligned}
\& 90 g \times 5 \times \cos \theta+22 g \times 3 \times \cos \theta \\
\& =67.2 g \times 6 \times \sin \theta \\
\& 450 g+66 g=403.2 g \tan \theta \\
\& \tan \theta=\frac{516}{403.2} \\
\& \theta=52.0^{\circ}
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\\
\text { B1 } \\
\text { M1A1 } \\
\text { A1 } \\
\text { A1 }
\end{gathered}
\] \& 4

5 \& | $\left[\begin{array}{l} \text { Needs } 0.6 \times 112 \mathrm{~g} \text { or } 0.6 \times 1097.6 \\ \text { NOT } 0.6 \times 1097 \text { unless } 658.56 \text { seen } \end{array}\right]$ |
| :--- |
| AG |
| (659 must be shown from correct working) |
| M1 |
| (one term, force \times distance \times cos or sin) |
| accept 52 |
| Alternative: or moments about B : M1 A2, 1 or 0 for four-term moment equation |
| + M1 for rearranging etc (dep on 4 term) |
| + A1 for answer |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

7 (a)	R_{A}	B2		B1 for four forces B2 for two different reactions and $30 g$ and 20 g marked
	4		2	
	$\downarrow 20 \mathrm{\nabla}$			
(b)	Taking moments about A :$\begin{aligned} & 3.2 \times 30 g=R_{B} \times 5 \\ & R_{B}=19.2 g \end{aligned}$	M1B1	3	B1 for 3.2
		A1		AG
(c)	Resolve vertically: $R_{A}+R_{B}=50 \mathrm{~g}$ $R_{A}=30.8 \mathrm{~g}$ or 302 N	M1	2	Can be awarded in (b)
		A1		
(d)	Gravitational force acts through mid-point of the rod	E1	1	
	Total		8	

(Q3, Jan 2010)

8 (a)		B2	2	B1 for S and $6 g$ (in correct place) B1 for R and F or combined vertical force at C
(b)	Moments about C : $\begin{aligned} & 3 \times S \times \cos 20=6 g \times 1 \times \cos 20 \\ & S=19.6 \mathrm{~N} \text { or } 2 g \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$	3	M1 2 terms, 1 term correct
	Moments about A :			R, F not correct 0 marks in (c)(i) and (c)(ii) Or
(c)(i)	$2 \times 6 g \times \cos 20=R \times 3$	M1A1		Moments about mid-point of rod:
	$\begin{aligned} & R=36.8 \mathrm{~N} \\ & \begin{aligned} \text { (or resolving, } R & =6 g \cos 20-S \cos 20 \\ & =4 g \cos 20 \text {) } \end{aligned} \end{aligned}$	A1		$\begin{aligned} & 2 \times S \times \cos 20=P \times 1 \times \cos 20 \\ & P=39.2 \mathrm{~N} \text { or } 4 g \end{aligned}$ (Or resolving vertically $P=4 g$)
(ii)	Resolve parallel to $A B$: $\begin{equation*} S \cos 70+F=6 g \cos 70 \tag{A1} \end{equation*}$ $\begin{equation*} F=4 g \cos 70 \tag{M1} \end{equation*}$	M1		$\begin{align*} R & =P \times \cos 20 \\ & =36.8 \mathrm{~N} \\ F & =P \times \sin 20 \end{align*}$
	$\begin{equation*} =13.4 \mathrm{~N} \tag{A1} \end{equation*}$	A1	5	$=13.4 \mathrm{~N}$
(d)	Using $F=\mu R$:	M1		M1 '(c)(ii)' $=\mu^{\prime}(\mathrm{c})(\mathrm{i})^{\prime}$
	$\begin{aligned} & 13.4=\mu \times 36.8 \\ & \mu=0.364 \text { or } \tan 20 \end{aligned}$	A1 \checkmark	2	$\text { (condone } \geq \text {) }$
	Total		12	

(Q4, June 2011)

11 (a) Smooth, hence reaction is perpendicular to possible movement
(b)

(c)

Resolving along the rod:
$S \cos \theta=m g \sin \theta$

Moment about $C: \quad S 2 a \cos \theta \cdot \sin \theta$
$=m g\left(2 a \cos \theta-\frac{1}{2} l\right) \cos \theta$
$4 a \cdot S \sin \theta=m g(4 a \cos \theta-l)$

Dividing: $4 a \tan \theta=\frac{4 a \cos \theta-l}{\sin \theta}$
$l=4 a \cos \theta-4 a \sin \theta \tan \theta$
$l=\frac{4 a \cos 2 \theta}{\cos \theta}$

B2

2
B1 for 2 forces correct
Or geometrically:
three forces act through a point B1
M1 is for 2 or 3 terms; 1 term correct (could be horizontal force at C used)
[forces act through point D]
$A D \cos 2 \theta=\frac{l}{2} \cos \theta \quad \mathrm{M} 1 \mathrm{~A} 1$
$A D \cos \theta=2 a \cos \theta \quad \mathrm{M} 1$
$l=\frac{4 a \cos 2 \theta}{\cos \theta} \mathrm{~A} 1$

cont	or Resolving perpendicular to S : $R \cos \theta=m g \cos 2 \theta$ Moments about A : $R 2 a \cos \theta=m g \frac{1}{2} l \cos \theta$ $4 a R=m g l$ 4amg $\cos 2 \theta=m g l \cos \theta$ $l=\frac{4 a \cos 2 \theta}{\cos \theta}$ or Resolving horizontally: $R \sin \theta=S \cos 2 \theta$ Resolving vertically: $R \cos \theta+S \sin 2 \theta=m g$ Moments about A : $R 2 a \cos \theta=m g \frac{1}{2} l \cos \theta$ $4 a R=m g l$ $R \cos \theta+R \frac{\sin \theta}{\cos 2 \theta} \sin 2 \theta=4 a \frac{R}{l}$ $l=\frac{4 a \cos 2 \theta}{\cos \theta}$	(M1A1) (M1A1) (A1) (M1A1) (M1A1) (A1)		Both attempted for M1 Both correct for A1
	Total		8	

$12 \text { (a)(i) }$ (ii) (b)	Moments about Q $\begin{aligned} & 2.2 \times 25 g=T_{\mathrm{P}} \times 4.2 \\ & T_{\mathrm{P}}=13.095 \times g \\ & T_{\mathrm{P}}=128 \mathrm{~N} \end{aligned}$ Resolving vertically $\begin{aligned} & T_{\mathrm{P}}+T_{\mathrm{Q}}=25 g \text { or } 245 \\ & T_{\mathrm{Q}}=117 \mathrm{~N} \end{aligned}$ Weight of plank acts through its centre Resolve vertically $T_{\mathrm{P}}+T_{\mathrm{Q}}=(25+m) g=2 T_{\mathrm{P}}$ Moments about B $\begin{aligned} & T_{\mathrm{P}} \times 5+T_{\mathrm{Q}} \times 0.8=25 g \times 3 \\ & (25+m) g \times 2.9=25 g \times 3 \end{aligned}$ $\begin{aligned} & 2.9 m g=25 g \times 0.1 \\ & 29 m=25 \end{aligned}$ $m=0.862 \text { or } \frac{25}{29}$	M1 A1 A1 M1 A1 E1 M1 A1 M1 A1 M1 A1	6	Or Moments about any point M1A1 Moments about any other point M1 $T_{\mathrm{P}} \mathrm{A} 1 ; T_{\mathrm{Q}} \mathrm{A} 1$ Could use T rather than T_{P}, T_{Q} Or Moments about Q $\begin{aligned} & T_{\mathrm{P}} \times 4.2=25 g \times 2.2-m g \times 0.8 \\ & \frac{1}{2} \times(25+m) g \times 4.2 \\ & \quad=25 g \times 2.2-m g \times 0.8 \\ & 2.9 m g=25 g \times 0.1 \\ & 29 m=25 \end{aligned}$ OR Moments about any point M1A1 Moments about any other point M1A1 Solution M1A1
	Total		12	

